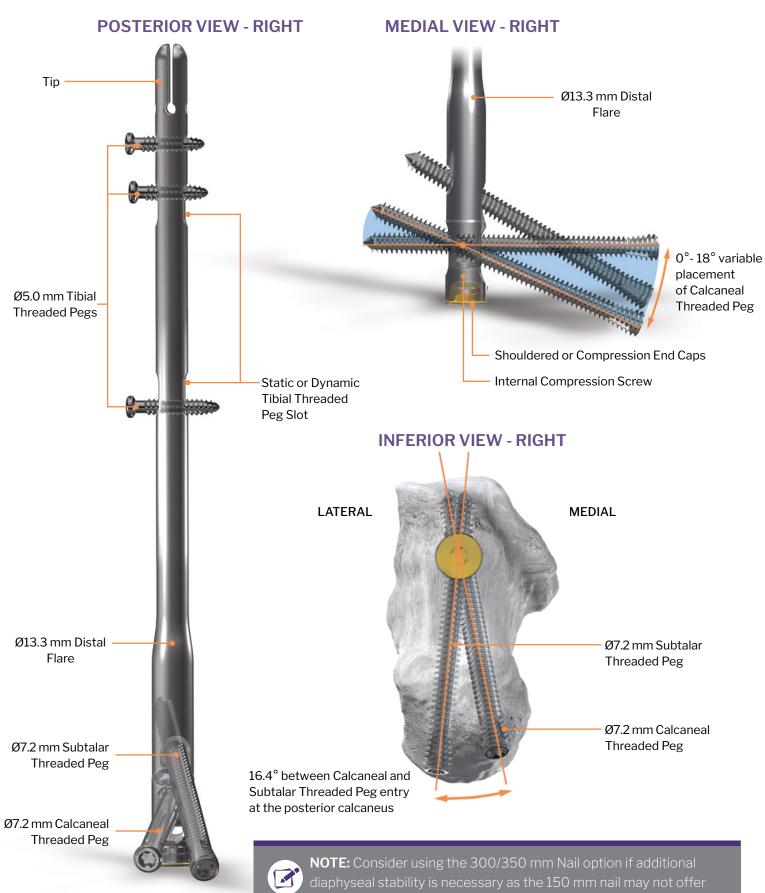
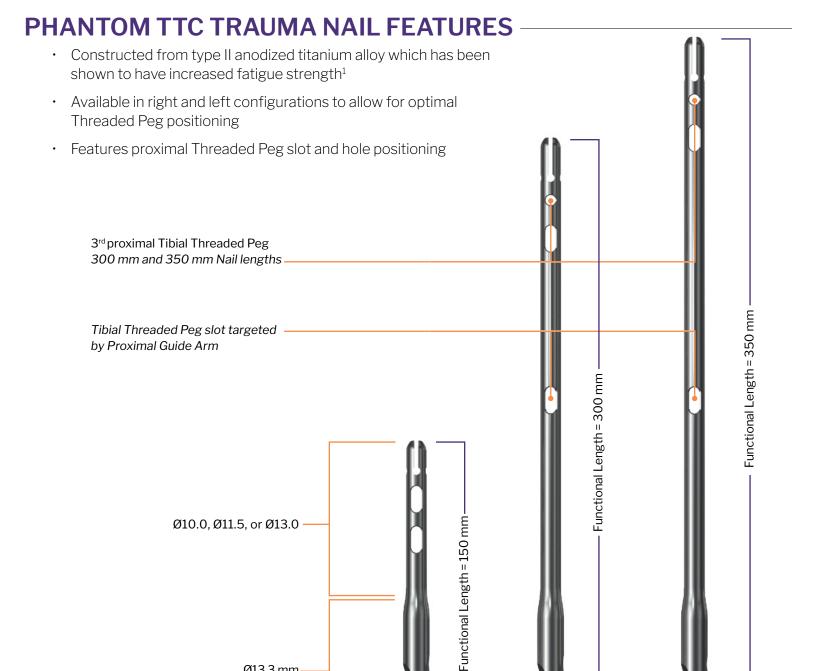

CONTENTS

SECTION 1	PHANTOM® TTC TRAUMA NAIL SYSTEM
	PHANTOM® SYSTEM ADVANTAGES
	PHANTOM® TTC TRAUMA NAIL FEATURES5-6
	PRECISION® GUIDE FEATURES
	GHOST™ OUTRIGGER FEATURES8
	TIBIAL FIXATION OPTIONS 9
	PHANTOM® TTC TRAUMA NAIL SYSTEM IMPLANTS10
	INTERNAL COMPRESSION SCREW10
	END CAP OPTIONS
	COMPRESSION END CAP OVERVIEW
	JOINT PREPARATION INSTRUMENTATION
	INSTRUMENTATION
SECTION 2	TTC ARTHRODESIS USING THE PHANTOM® TTC TRAUMA NAIL
	PATIENT POSITIONING
	INCISION/EXPOSURE: TIBIOTALAR AND SUBTALAR JOINTS
	IMPLANT SIZING15
	ESTABLISH ENTRY POINT INCISION AND DRILL: PIN INSERTION16
	USE OF THE PRECISION® GUIDE FOR DRILL: PIN PLACEMENT
	ALTERNATIVE: FREEHAND DRILL-PIN INSERTION18
	OPTIONAL: USE OF THE PARALLEL OFFSET GUIDE18
	ENTRY DRILLING19

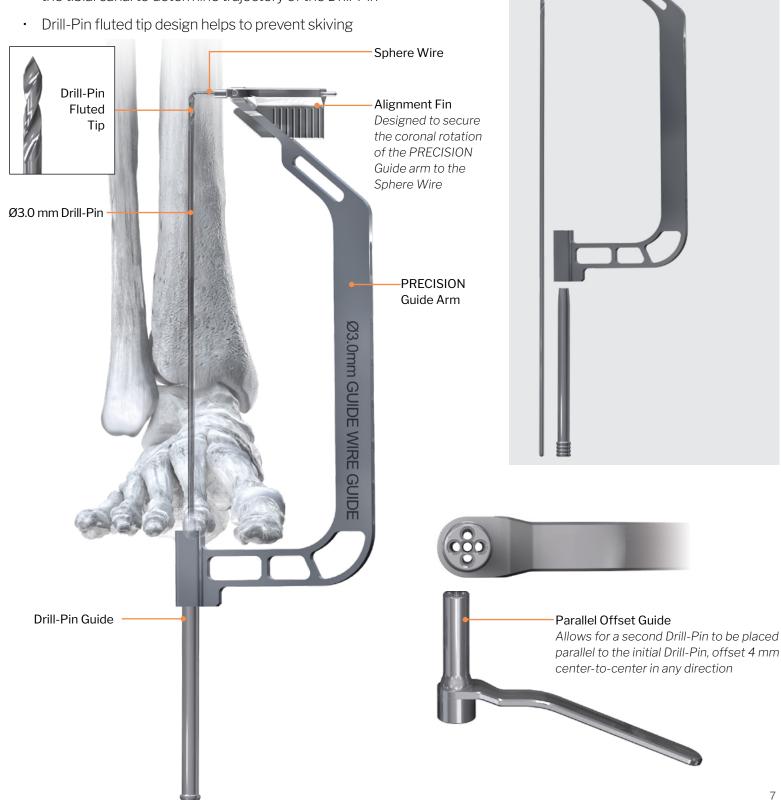

SECTION 2 (continued)	TTC ARTHRODESIS USING THE PHANTOM® TTC TRAUMA NAIL
	STEPPED REAMING19
	FLEXIBLE REAMING20
	NAIL ASSEMBLY
	ALIGNMENT CHECK
	NAIL INSERTION
	CALCANEAL THREADED PEG INSERTION 30-31
	TIBIAL THREADED PEG INSERTION: 150 MM TRAUMA NAIL
	TIBIAL THREADED PEG INSERTION: 300/350 MM TRAUMA NAILS33
	INTERNAL COMPRESSION34
	SUBTALAR THREADED PEG INSERTION34-35
	OPTIONAL: SUBTALAR MONSTER® SCREW PLACEMENT OUTSIDE OF PHANTOM® TTC TRAUMA NAIL
	OUTRIGGER REMOVAL37
	END CAP PLACEMENT37
	CLOSURE37
	IMPLANT REMOVAL
	CASE & TRAY COMPONENTS
SECTION 3	MR SAFETY INFORMATION
	MR SAFETY INFORMATION42


PHANTOM SYSTEM ADVANTAGES

- PRECISION Guide Technology allows for precise and reproducible placement of the initial Drill-Pin to determine implant trajectory
- Internal Compression Screw allows for up to 8 mm of internal compression across the tibiotalar and subtalar joints
- Ø7.2 mm Headless, Threaded Pegs, in the calcaneus and across the subtalar joint for increased fixation
- Variable (0°-18°) posterior-anterior Threaded Calcaneal Peg trajectory allows for precise placement and optimized purchase
- Distal end of Nail is Ø13.3 mm through the subtalar and tibiotalar joints
- Robust offering of joint preparation instrumentation for a tibiotalar and tibiotalocalcaneal arthrodesis

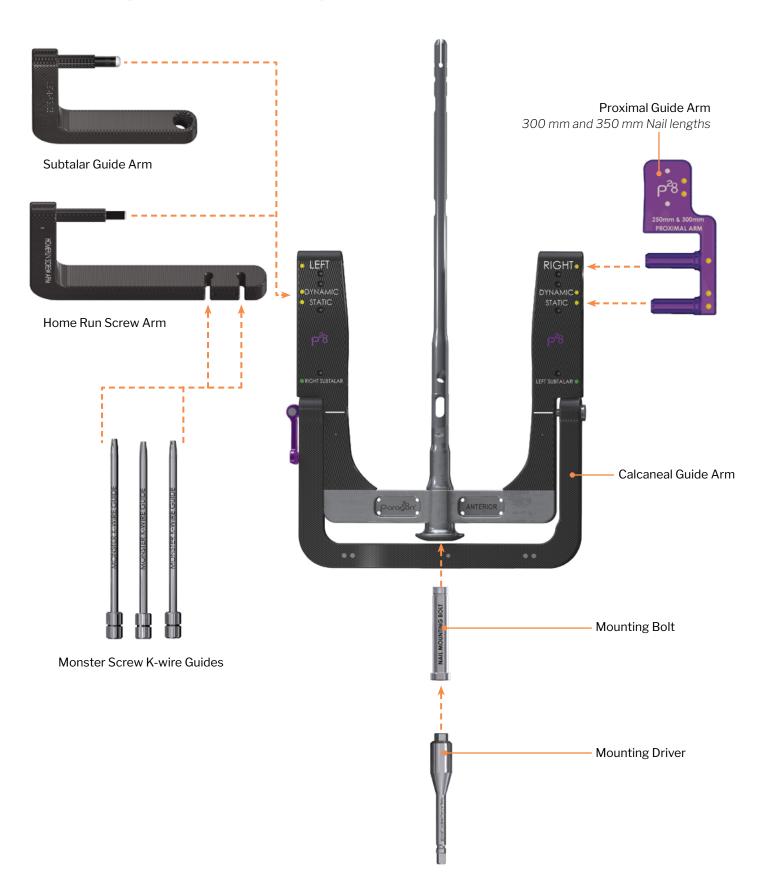
PHANTOM TTC TRAUMA NAIL FEATURES

Ø13.3 mm


		LENGTH OPTIONS		
		150 mm	300 mm	350 mm
ER IS	Ø10.0 mm	•	•	•
DIAMETER	Ø11.5 mm	•	•	•
	Ø13.0 mm	•	•	•

UNASSEMBLED

PRECISION GUIDE


PRECISION GUIDE FEATURES

- · PRECISION Guide Technology guides the initial placement of the Ø3.0 mm Drill-Pin in the distal to proximal direction
- Designed to reduce the number of Drill-Pin placement attempts to set Nail trajectory
- Termination point of the Sphere Wire is designed to be centered in the tibial canal to determine trajectory of the Drill-Pin

GHOST OUTRIGGER FEATURES -

ANTERIOR VIEW (RIGHT CONFIGURATION)

TIBIAL FIXATION OPTIONS

STATIC: Constructs a static Nail within that Tibia, allowing for future weight-bearing compression with removal of distal Tibia Threaded Peg.

DYNAMIC: Constructs a weight-bearing compression Nail within the tibia.

PHANTOM TTC TRAUMA NAIL SYSTEM IMPLANTS-

THREADED PEG OFFERING:

	TIBIA THREADED PEG	CALCANEAL THREADED PEG	SUBTALAR THREADED PEG	
	6			
DIAMETER:	Ø5.0 mm	Ø7.2 mm		
LENGTH:	20 mm - 70 mm in 2 mm increments	45 mm - 120 mm in 5 mm increments		
COLOR INSTRUMENTS:	•			
DRIVER:	TX-20 - Long	TX-30 - Long		
DRILL:	Ø3.8 mm x 250 mm - Guided Ø3.8 mm x 130 mm - Freehand	Ø4.6 mm x 300 mm - Solid	Ø4.6 mm x 300 mm - Cannulated	
DRILL GUIDE:	Tibial Drill Guide	Calcaneal Drill Guide	Subtalar Drill Guide	
PEG GUIDE:	Tibial Peg Guide	Calcaneal Peg Guide	Subtalar Peg Guide	
K-WIRE:	-	Ø2.3 mm		
K-WIRE GUIDE:	-	Ø2.3 mm		

INTERNAL COMPRESSION SCREW

- Placed in Nail prior to attaching to Outrigger
- Pushes against Calcaneal Threaded Peg to compress both the tibiotalar and subtalar joints
- Provides up to 8 mm of internal compression

END CAP OPTIONS —

- · Placed in Nail after Threaded Peg placement and Outrigger removal
- Fills the Countersink void and helps to prevent bone ingrowth at the distal end of the Nail

SHOULDERED END CAP

 Can be used in combination with the Internal Compression Screw

Longer shoulder (bottom image) fills larger Countersink void

COMPRESSION END CAP

Used without the Internal Compression Screw

 Pushes against the Calcaneal Threaded Peg to provide up to 8 mm of compression across the tibiotalar joint

COMPRESSION END CAP OVERVIEW -

SHORT COMPRESSION END CAP

3 mm proud

1 mm proud

8 mm of compression

5 mm countersunk

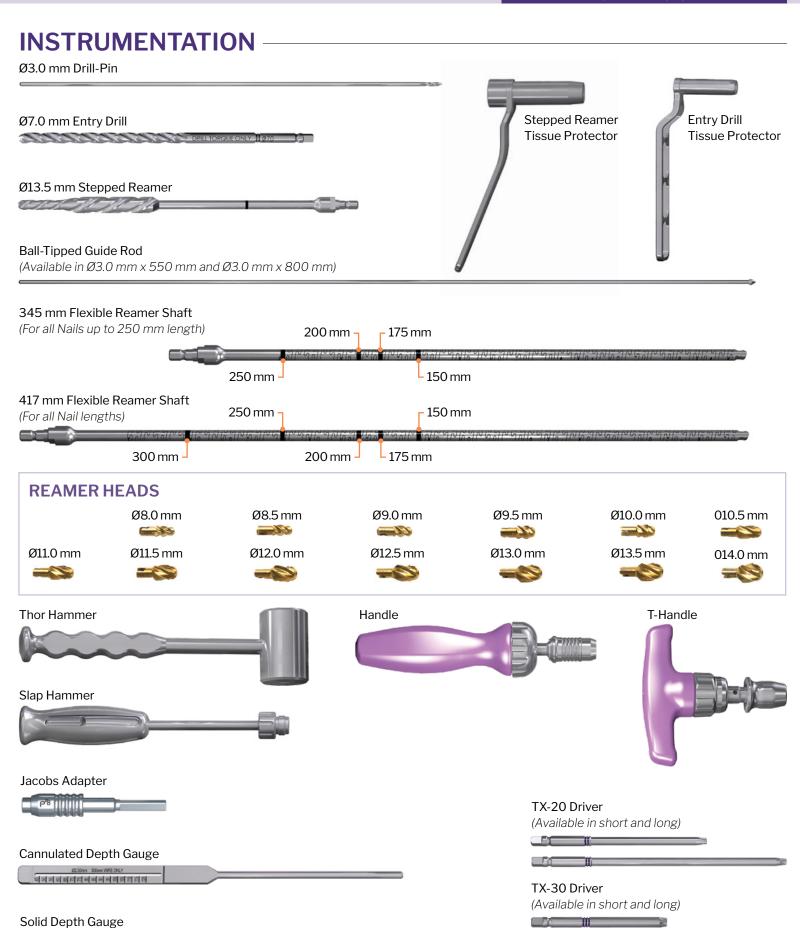
LONG COMPRESSION END CAP

0 mm of compression

7 mm proud

2 mm of compression

5 mm proud

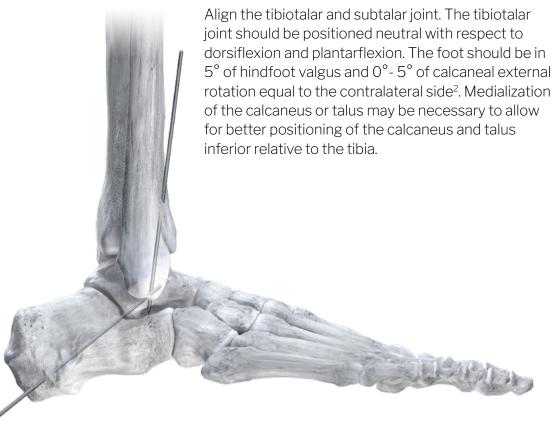

8 mm of compression

1 mm countersunk

JOINT PREPARATION INSTRUMENTATION -

PATIENT POSITIONING

Patient positioning is per surgeon preference, and may depend on the pathology and/or previous surgical approaches for a particular patient. Patient positioning options include supine with an ipsilateral bump, lateral decubitus, or prone.


A radiolucent table is recommended for this procedure. Prepare the entire foot and lower limb such that the patient is draped above the knee and visualization of the knee and lower limb is present to allow for assessment of lower limb alignment. The distal limbs should extend just over the operating room table. A large C-arm should be available for entry over the operative site from the contralateral side.

INCISION/EXPOSURE: TIBIOTALAR AND SUBTALAR JOINTS

Pre-existing deformities can be addressed and corrected at this time. Anatomical considerations may determine the surgeon's preferred approach to access the tibiotalar and subtalar joints for cartilage removal and alignment. A pin distractor is provided to allow for space and visualization during joint preparation, if needed, and is to be used with provided Ø2.0 mm or Ø2.3 mm K-wires.

Prepare the tibiotalar joint and the anterior, middle, and posterior facets of the subtalar joint for arthrodesis according to surgeon's preferred technique and approach using the provided joint preparation instrumentation. Following cartilage removal, it is advised to fenestrate the subchondral plate with the subchondral drill, burrs, and/or bone fenestration chisels to promote healing.

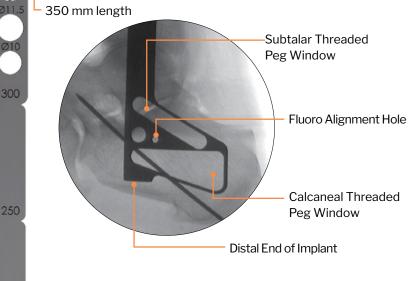
TIBIOTALAR AND SUBTALAR JOINT POSITIONING AND TEMPORARY FIXATION

With the subtalar joint and tibiotalar joint held in this alignment, use the provided \emptyset 2.0 mm K-wires to temporarily fix the tibiotalar joint and the subtalar joint in the preferred alignment. The wire across the tibiotalar joint should pass from the anterolateral tibia to the anteromedial talus, avoiding the anticipated path of the Nail. The wire across the subtalar joint should be placed laterally.

LENGTH MEASUREMENT

NOTCHES

IMPLANT SIZING


IMPLANT SIZER

200

175

150

Place the Implant Sizer over the medial or lateral side of the leg. Ensure a proper lateral view of the leg is seen under fluoroscopy using the Fluoro Alignment Hole. The Fluoro Alignment Hole should be fully in view to confirm the proper rotation of the Implant Sizer.

Distal Tibial Slot* DIAMETER HOLES Ø13.0 mm Ø11.5 mm Ø10.0 mm

Perform the following checks to anticipate position of the Nail:

- Ensure Subtalar Threaded Peg Window is within the calcaneus with an appropriate start point.
- Ensure the Tibial Slots are in proper positioning and above the tibiotalar joint.
- Ensure the Calcaneal Threaded Peg Window is within the calcaneus with an appropriate start point.
- Ensure the distal end of the Implant Sizer is 5 mm countersunk in preparation for internal compression.

The appropriate Nail length can be determined within the tibia utilizing the Length Measurement Notches.

Nail length offerings include:
 150 mm, 300 mm, and 350 mm.

Slide the Implant Sizer distally such that the Diameter Holes are over the projected proximal termination point of the Nail.

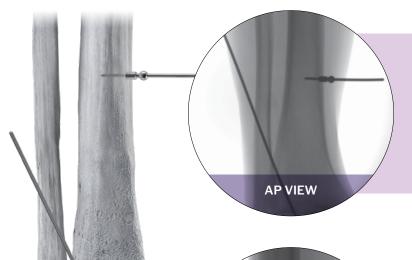
 Determine approximate Nail diameter by selecting which Diameter Hole best fills the tibia canal without violating the cortex.

NOTE: When measuring for a 350 mm length Nail, use the whole length of the sizer as the tip of the implant sizer corresponds to a 350 mm length Nail.

ESTABLISH ENTRY POINT INCISION AND DRILL: PIN INSERTION

A PRECISION Guide is available for Drill-Pin placement, with instructions below for setup and use. If the PRECISION Guide is not used, proceed to page 17 for freehand Drill-Pin insertion instructions.

USE OF THE PRECISION GUIDE FOR DRILL: PIN PLACEMENT


Position the distal end of the PRECISION Guide approximately one finger breadth plantar to the fat pad of the heel, with the proximal aspect of the PRECISION Guide Arm positioned along the anterior medial face of the tibia. Mark the entry point for the Sphere Wire and make a small stab incision at the area of intended Sphere Wire placement centrally over the anterior medial face of the tibia. Position the Sphere Wire perpendicular to the anterior medial face of the tibia and parallel to the neutral foot.

Drive the Sphere Wire until the "can" portion contacts bone.

Confirm placement using an AP view on fluoroscopy to ensure that the tip of the Sphere Wire is centered in the medullary canal.

The Drill-Pin's trajectory will terminate at the tip of the Sphere Wire, thus the Sphere Wire insertion depth may need to be adjusted according to patient anatomy.

OBLIQUE VIEW

Take an oblique fluoroscopic view down the center of the wire to ensure that the Sphere Wire is centered in the anterior medial face of the tibia.

USE OF THE PRECISION GUIDE FOR DRILL: PIN PLACEMENT



Attach the PRECISION Guide Arm to the Sphere Wire proximally.

Position the Drill-Pin Guide through the distal aspect of the PRECISION Guide. Place a Ø3.0 mm Drill-Pin into the Drill-Pin Guide.

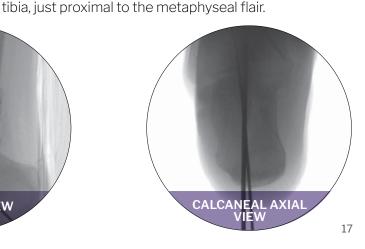
Confirm intended Drill-Pin start point via lateral fluoroscopy.

Upon establishing the correct start point on lateral

calcaneus, talus, and tibia using AP, lateral, and calcaneal

talus, and tibia to terminate in the medullary canal of the

axial fluoroscopic views during and after the process.


Ensure that the Drill-Pin is centered in the calcaneus,

fluoroscopy, drive the Ø3.0 mm Drill-Pin into the

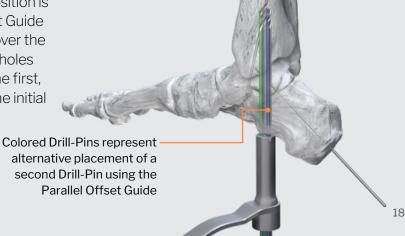
A plantar incision is made just distal to the plantar fat pad, slightly lateral to midline. Blunt dissection is carried down to the plantar calcaneus to avoid disruption of nearby neurovascular bundles. The tip of the Ø3.0 mm Drill-Pin is placed against the plantar aspect of the calcaneus. A lateral fluoroscopic image is taken to ensure correct distal to proximal trajectory of the Drill-Pin.

USE OF THE PRECISION GUIDE FOR DRILL: PIN PLACEMENT

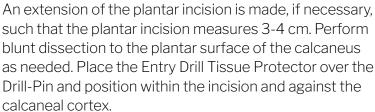
Remove the Alignment Fin from the Sphere Wire and remove the Drill-Pin Guide from the PRECISION Guide Arm. Detach the PRECISION Guide Arm from the Sphere Wire and slide over the Drill-Pin.

Remove the Sphere Wire from the tibia.

ALTERNATIVE: FREEHAND DRILL-PIN INSERTION


A plantar incision is made just distal to the plantar fat pad, slightly lateral to midline. Blunt dissection is carried down to the plantar calcaneus to avoid disruption of nearby neurovascular bundles. The tip of the $\emptyset 3.0$ mm Drill-Pin is placed against the plantar aspect of the calcaneus. A lateral fluoroscopic image is taken to ensure correct distal to proximal trajectory of the Drill-Pin.

Upon establishing the correct start point, drive the Ø3.0 mm Drill-Pin into the calcaneus, talus and tibia using AP, lateral and calcaneal axial fluoroscopic views during and after the process to ensure that the Drill-Pin is centered in the calcaneus, talus, and tibia to terminate in the medullary canal of the tibia, just proximal to the metaphyseal flare as shown on page 16.


OPTIONAL: USE OF THE PARALLEL OFFSET GUIDE

If angulation of the Drill-Pin is suitable, but the Drill-Pin position is too anterior, posterior, medial or lateral, the Parallel Offset Guide can be used. Slide the Parallel Offset Guide central hole over the initial Drill-Pin. Place a second wire in any of the adjacent holes to allow for this second Drill-Pin to be placed parallel to the first, offset 4 mm center-to-center in any direction. Remove the initial Drill-Pin and the Parallel Offset Guide.

ENTRY DRILLING

Insert the Entry Drill Tissue Protector and the Ø7.0 mm Entry Drill over the Drill-Pin, and advance the Drill proximally, confirming the Drill path trajectory under fluoroscopy at each joint. Drill past the metaphyseal flare in the tibia. Remove the Ø7.0 mm Entry Drill and Entry Drill Tissue Protector while maintaining the position of the Drill-Pin.

STEPPED REAMING

Insert the Stepped Reamer Tissue Protector and Stepped Reamer over the Drill-Pin. Ream proximally until the laser mark on the Stepped Reamer reaches the Tissue Protector.

TIP: Insert the Stepped Reamer Tissue Protector and Stepped Reamer over the Drill-Pin. Ream proximally until the laser mark on the stepped Drill reaches the Tissue Protector.

It is recommended to check lateral fluoroscopy to ensure that the larger Ø13.5 mm diameter contacts the metaphyseal bone of the tibia and that the proximal portion of the Drill matches the intended Countersink of the Nail.

FLEXIBLE REAMING

Following stepped reaming, remove the Drill-Pin, and place the Ball-Tipped Guide Rod from the plantar aspect of the calcaneus into the distal tibia. Temporary fixation can be removed at this time or after placement of the Nail, per surgeon preference. The Thor Hammer may be used to fully seat the Ball-Tipped Guide Rod within the canal. Confirm position and length of the Ball-Tipped Guide Rod using fluoroscopy.

Attach the desired Reamer Head to the Reamer Shaft. It is recommended to begin with the smallest diameter Reamer Head (Ø8.0 mm), thus creating a Reamer Construct.

> Laser Mark for Nail Lengths

Insert the Stepped Reamer Tissue Protector over the Ball Tipped Guide Rod into the incision. Using the Reamer Construct, ream over the Ball-Tipped Guide Rod until the laser marking on the Reamer Shaft meets the Tissue Protector. Ream incrementally in Ø0.5 mm increments, increasing in size until desired resistance is reached while confirming under fluoroscopy. It is recommended to undersize the Nail diameter by Ø1.0 - Ø1.5 mm from the largest reamed diameter. Remove the Ball-Tipped Guide Rod from the tibial canal once reaming is complete.

TIP: While under power, the reverse function can help to alleviate resistance during Reamer Construct withdrawal from the tibial canal.

NOTE: While removing the Reamer Construct during stop to prevent extraction of the Ball-Tipped Guide Rod.

NOTE: When reaming for a 350 mm Nail, ream until the power connection is touching

NAIL ASSEMBLY

Utilizing the TX-30 Driver, insert the Internal Compression Screw into the distal end of the Nail in a clockwise direction. From the posterior view of the Nail, embed the Internal Compression Screw until it is visible in the Calcaneal Window.

Open the Cam Lock along the Calcaneal Guide Arm.

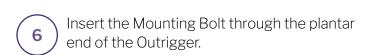
Swing the Calcaneal Guide Arm to access the plantar end of the Outrigger. Close the Cam Lock with the Calcaneal Guide Arm in the angled position.

NOTE: In the first few uses, the Cam Lock may appear slightly open 10°-15° when in the locked position. Over time and with repeated use, the Cam Lock will be flush with the Outrigger body when locked.

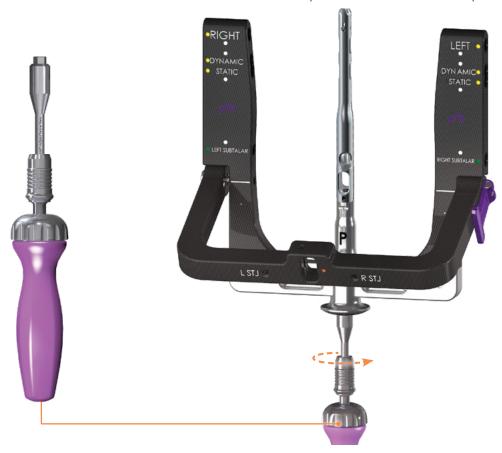
First uses: 10°-15° opened

Over time: Flush

Attach the Mounting Driver to the provided Handle.


ALIGNMENT CHECK

Align the prongs of the Nail to the prongs of the Outrigger. The "P" (posterior) on the Nail should align with the "P" on the Outrigger.



ALIGNMENT CHECK-

7

Secure the Nail by placing the Mounting Driver through the plantar end of the Outrigger and turn in a clockwise direction. Once secured, confirm location of the Internal Compression Screw. If the Internal Compression Screw is inserted too far in the Calcaneal Window and may appear to interfere with the Calcaneal Peg trajectory, use the TX-30 Driver and Handle and turn counterclockwise to reposition the Internal Compression Screw.

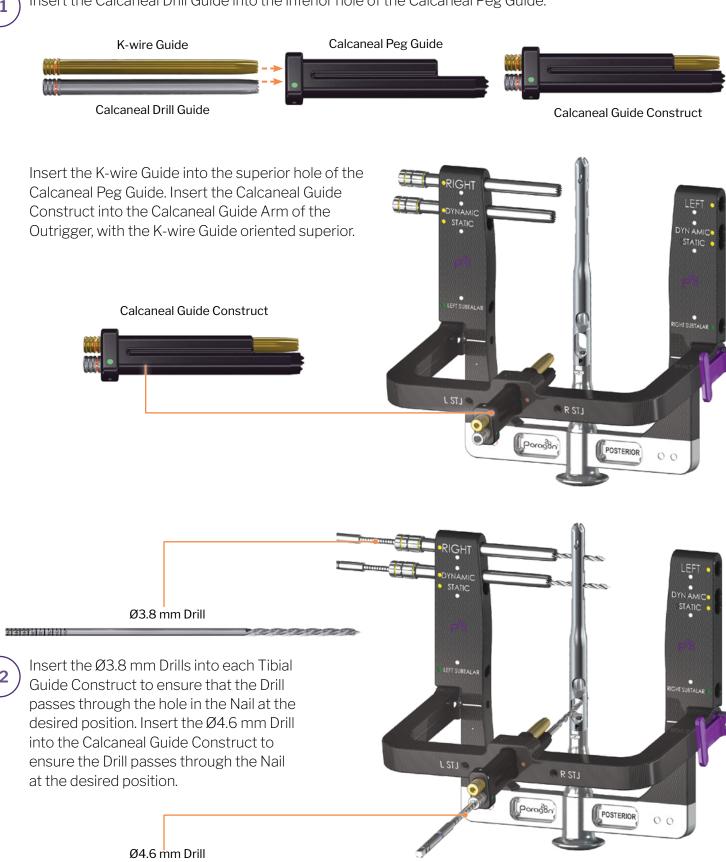
To set up the Tibial Guides, insert the Tibial Drill Guide into the Tibial Peg Guide and thread together in a clockwise direction.

Tibial Drill Guide

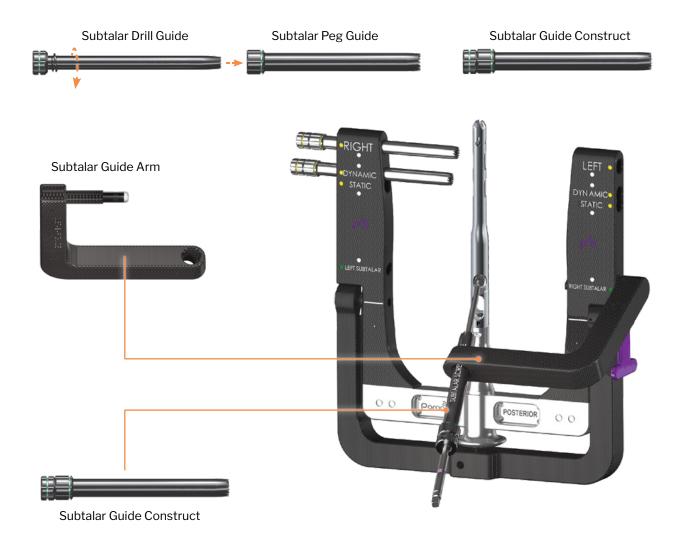
Tibial Peg Guide

9 If using a 150 mm Trauma Nail, insert the Tibial Guide Construct medially.

Insert each Tibial Guide into the applicable Tibial Threaded Peg holes, verifying choice of dynamic or static placement.

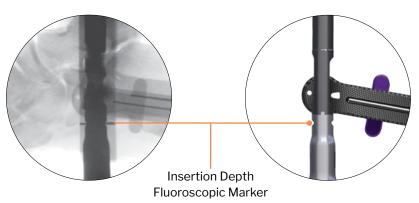


ALIGNMENT CHECK


Insert the Calcaneal Drill Guide into the inferior hole of the Calcaneal Peg Guide.

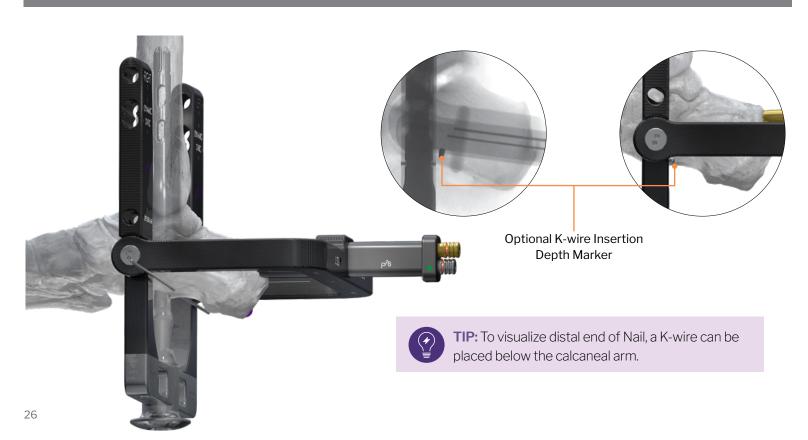
ALIGNMENT CHECK-

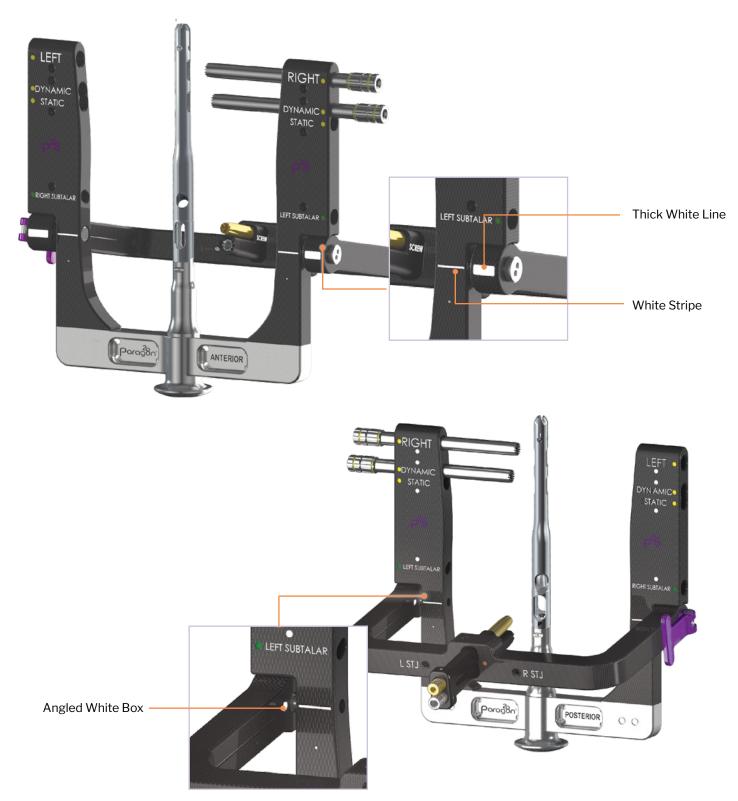
Lower the Calcaneal Guide Arm. Attach the Subtalar Targeting Arm into the appropriate right or left Subtalar Threaded Peg hole on the Outrigger. Insert the Subtalar Guide Construct into the Subtalar Targeting Arm hole. Insert the Ø4.6 mm Drill to ensure that trajectory of the Subtalar Threaded Peg will be appropriate. Remove Subtalar Targeting Arm prior to presenting the Outrigger setup to the surgeon.



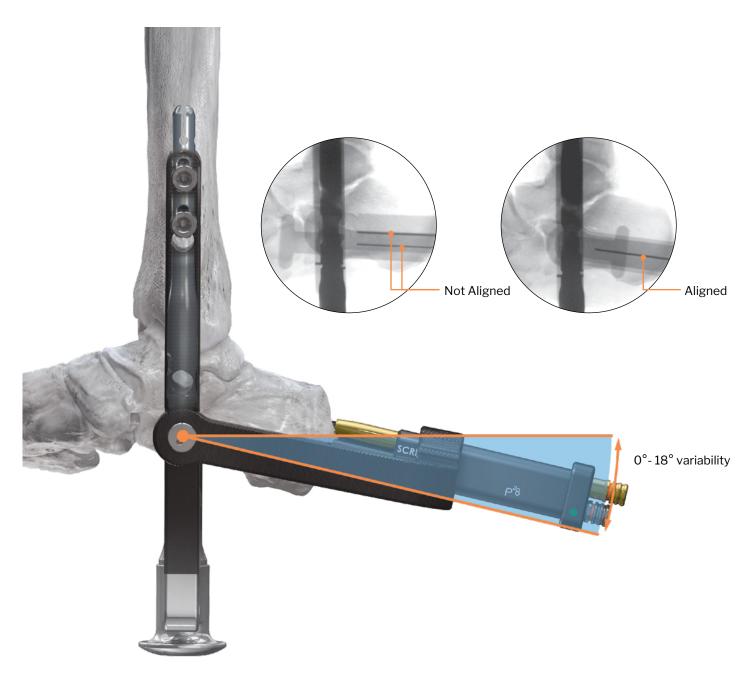
Three position checks are important to ensure correct positioning of the Nail prior to Threaded Peg insertion: **Superior/Inferior Insertion Depth, Calcaneal Threaded Peg Trajectory and Nail Rotation**

SUPERIOR/INFERIOR INSERTION DEPTH


Insert the Nail and attached Outrigger into the reamed canal. Use the Thor Hammer to tap the Outrigger strike plate until the Nail is fully seated. Do not strike the Calcaneal Guide Arm. Confirm Nail size and placement using fluoroscopy.


NOTE: Recommended placement of the Nail is 5 mm past the plantar cortex of the calcaneus to account for intended internal compression and avoid plantar Nail prominence. An insertion depth fluoroscopic marker is located on the Outrigger to indicate 5 mm distal to the Nail end. It is recommended that this fluoroscopic marker is flush to the plantar surface of the calcaneus. If the Implant Sizer indicated that a deeper or shallower depth is necessary, adjust as needed.

CALCANEAL THREADED PEG TRAJECTORY

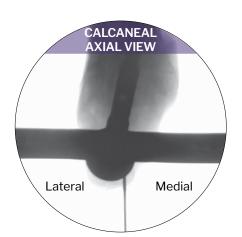

Open the Cam Lock on the Calcaneal Guide Arm and swivel the Arm superiorly into the preferred position for Threaded Peg trajectory. The 18° of adjustability is noted on the Outrigger when the white stripe on the Outrigger is within the thick white line on the Calcaneal Guide Arm. The Cam Lock will only close when the white stripe is within the thick white line, or, if viewing from the side, the white stripe must be within the angled white box. Close the Cam Lock when desired positioning is achieved.

CALCANEAL THREADED PEG TRAJECTORY

The Calcaneal Guide Arm on the Outrigger features two fluoroscopic inlays to help determine the appropriate Calcaneal Threaded Peg trajectory.³ Align the two fluoroscopic inlays such that they are viewed as a single line to indicate a true lateral view. Assess the position of the Calcaneal Threaded Peg using the aligned fluoroscopic inlays. If the inlay alignment is not correct, open the Cam Lock and readjust the Calcaneal Guide Arm appropriately using fluoroscopy. It is recommended to centrally locate the Threaded Peg from superior to inferior at the anterior calcaneus to allow for maximum purchase in the calcaneus.

NAIL ROTATION

Review the position of the Calcaneal Guide Construct clinically with the orientation on the calcaneus. Palpate the medial edge of the calcaneus and ensure that the Calcaneal Guide Construct is just lateral to the medial edge of the calcaneus to allow for future placement of the Subtalar Threaded Peg and such that the P-A Calcaneal Threaded Peg terminates in the anterior process. Ideal position can be achieved by externally rotating the jig 5-10 degrees from neutral.

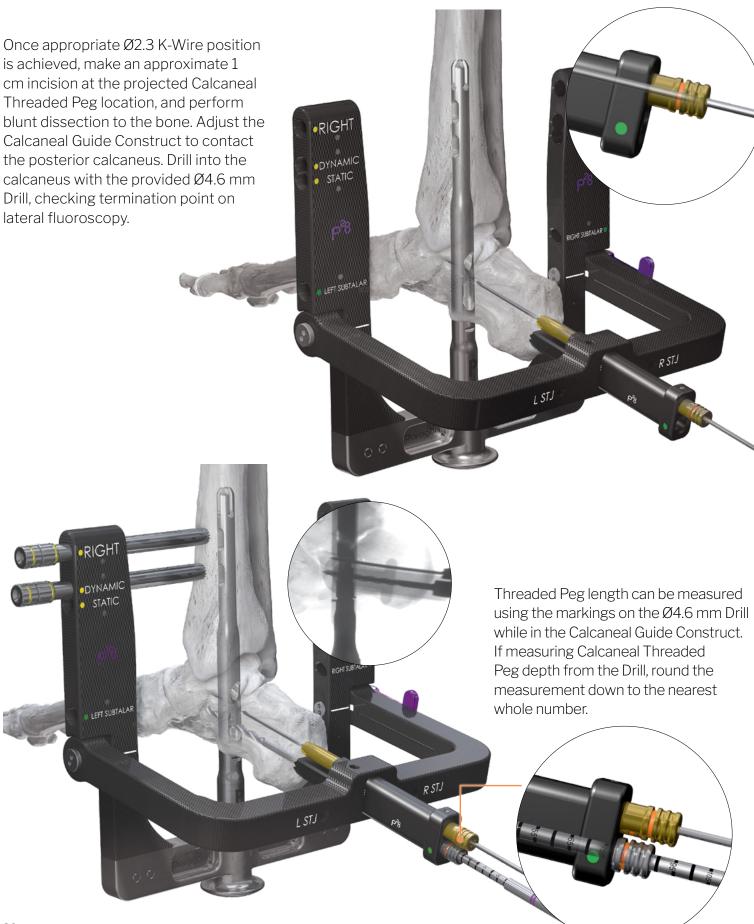


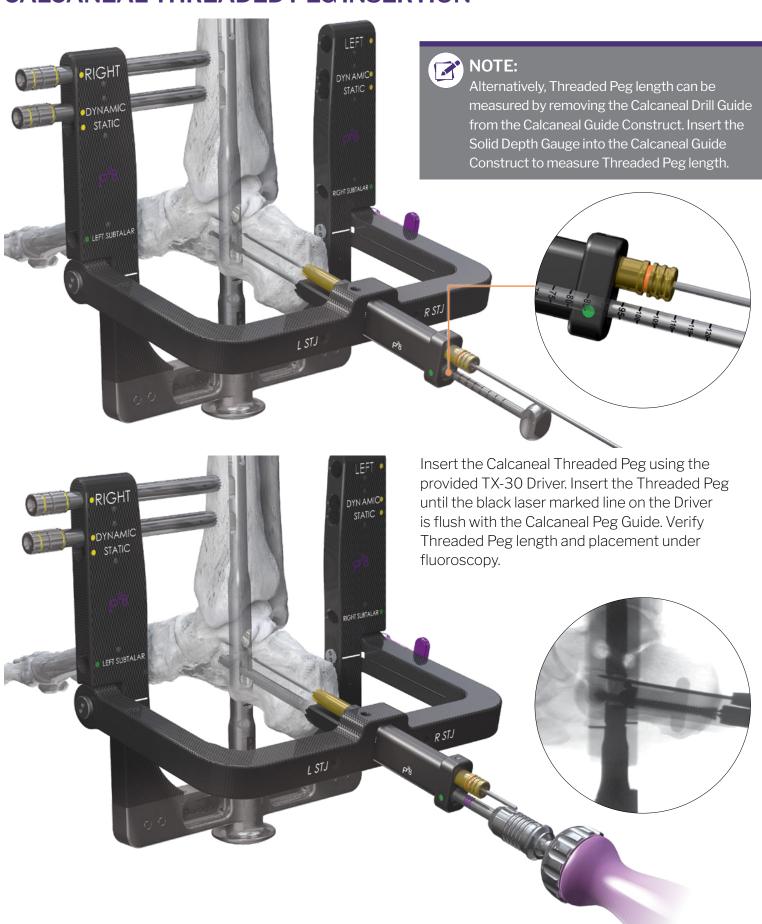
CORRECT

Calcaneal Threaded Peg has a more medial start point to allow for the Subtalar Threaded Peg to be 16.4° lateral to the Calcaneal Threaded Peg. This trajectory allows for both Threaded Pegs to enter the calcaneus posteriorly while achieving additional bony purchase.

INCORRECT

Calcaneal Threaded Peg is centered causing the Subtalar Threaded Peg start point to be too lateral.




NOTE: Anticipated Subtalar Threaded Peg Trajectory can be approximated by placing the depth gauge through the R/LSTJ holes in the outrigger depending on limb laterality.

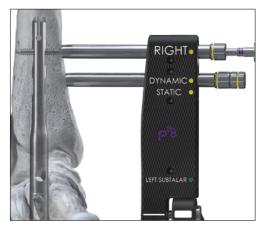
Insert a Ø2.3 X 230 mm K-Wire into the K-wire Guide within the Calcaneal Guide Arm in the desired position. Confirm Ø2.3 K-Wire placement and Calcaneal Threaded Peg trajectory by retracting back the Calcaneal Guide Construct and taking a calcaneal axial view using fluoroscopy.

CALCANEAL THREADED PEG INSERTION

CALCANEAL THREADED PEG INSERTION

TIBIAL THREADED PEG INSERTION: 150 MM TRAUMA NAIL

Placement of the Distal Tibial Threaded Pegs at these locations is only for the 150 mm Trauma Nail.


Ensure that the Tibial Drill Guides are positioned for desired initial set-up (static versus dynamic configuration). Make a small stab incision at the proximal Tibial Guide Construct. Perform blunt dissection and adjust Drill Guide construct to abut bone. Drill bicortically, from the medial to lateral direction, through the Tibial Drill Guide using the Ø3.8 x 250 mm Drill.

Threaded Peg depth can be measured from the Drill with the Drill Guide in place and/or using the Solid Depth Gauge after removal of the Drill Guide. When measuring Tibial Threaded Peg depth, round the measurement up to the nearest whole number. Add 2 mm from the measured length to accommodate the length of the head of the threaded peg (E.g. measured 46 mm, use a 44 mm threaded peg).

NOTE:

If measuring Threaded Peg depth off of the Solid Depth Gauge, ensure the Drill Guide is touching the bone and the Drill tip is reaching the lateral edge. If measuring Threaded Peg depth off of the Solid Depth Gauge, ensure the Drill Guide is touching the bone and the Solid Depth Gauge is grabbing the lateral cortex.

Once the Tibial Drill Guide is removed, insert the appropriately sized Threaded Peg through the Tibial Peg Guide and into the Nail using the long TX-20 Driver and handle, turning in a clockwise direction until the laser mark on the Driver meets the end of the Tibial Peg Guide, or when the head of the Threaded Peg is snug against the tibia.

Verify the Threaded Peg length and placement under fluoroscopy. Repeat the steps above to place the second Tibial Threaded Peg in the dynamic hole.

NOTE:

Ensure that the Tibial Threaded Pegs do not violate the fibula on fluoroscopy.

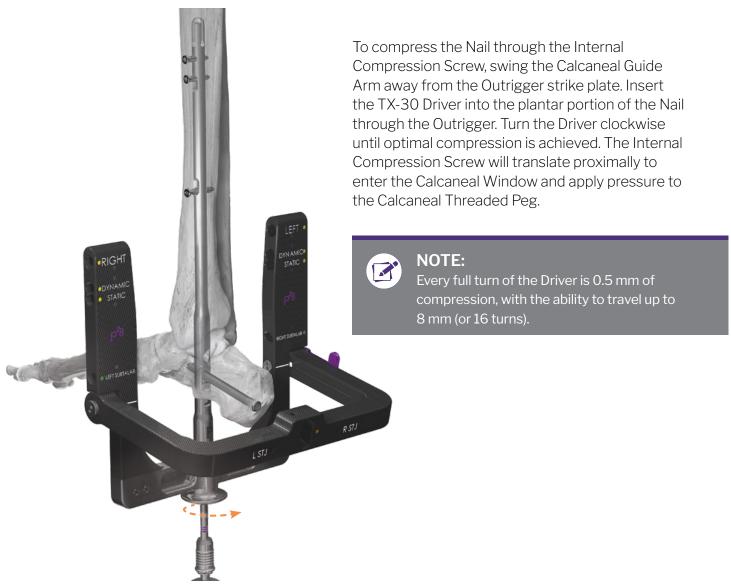
TIBIAL THREADED PEG INSERTION: 300/350 MM TRAUMA NAILS

Phantom TTC Trauma Nails measuring 300 or 350 mm or greater in length utilize a Proximal Guide Arm to insert a Tibial Threaded Peg. To attach, insert the Proximal Guide Arm into the most proximal medial tibial arm slot on the Outrigger.

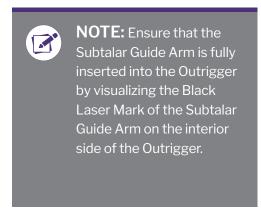
With Tibial Guide Construct

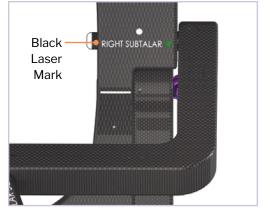
Insert the Tibial Guide Construct into the Proximal Guide Arm, using either the dynamic or static configuration to achieve constant compression. Using a lateral fluoroscopic view, ensure that the Tibial Guide Construct is centered over the most proximal Nail slot.

Repeat the steps previously described to insert the Tibial Threaded Peg.


For placement of the proximal Tibial Threaded Pegs in the 300 and 350 mm length Nails, utilize fluoroscopy and a perfect circle technique to drill bicortically from the medial to lateral direction using the shorter $\emptyset 3.8 \times 130$ mm Drill to drill the Threaded Peg holes freehand in both the slot and proximal threaded peg hole.

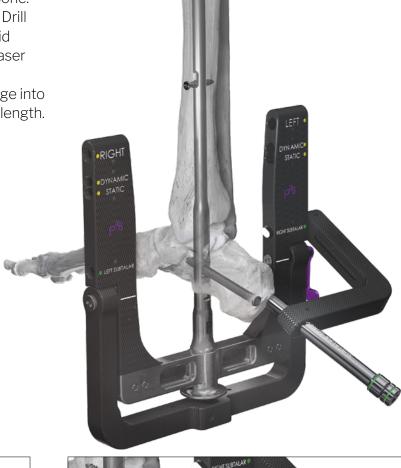
Threaded peg length will need to be determined using either fluoroscopy or the solid depth gauge with the screw guide.


To measure threaded peg length with the depth gauge, place the screw guide against the bone, place the depth gauge through the guide and hook the lateral cortex. Measure length based on the depth gauge measurement through the screw guide.

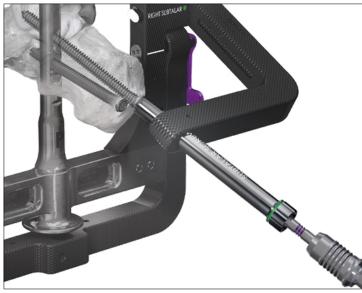

INTERNAL COMPRESSION

SUBTALAR THREADED PEG INSERTION

Open the Cam Lock adjacent to the Calcaneal Guide Arm on the Outrigger. Move the Calcaneal Guide Arm inferiorly to align with the inferior aspect of the Outrigger. Insert the Subtalar Guide Arm in the appropriate right (R) or left (L) subtalar hole (STJ) on the Outrigger. When correctly inserted, The Subtalar Guide Arm will provide an audible click.



34 CORRECT INCORRECT


SUBTALAR THREADED PEG INSERTION

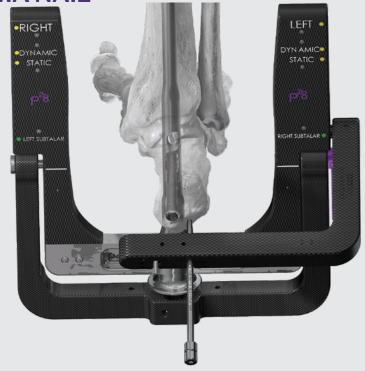
Insert the Subtalar Guide Construct into the Subtalar Guide Arm.

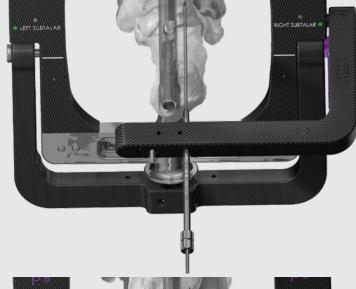
Make a stab incision at the location of the Subtalar Guide Construct and perform blunt dissection to bone. Adjust the Subtalar Guide Construct to abut bone. Drill into the calcaneus and talus with the Ø4.6 mm Solid Drill. Measure the Threaded Peg length off of the laser marking on the Ø4.6 mm Solid Drill, or remove the Subtalar Drill Guide and insert the Solid Depth Gauge into the Subtalar Peg Guide to measure Threaded Peg length.

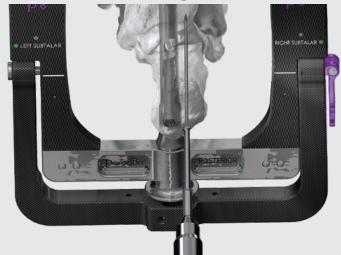
Insert the appropriately sized Subtalar Threaded Peg through the Nail using the technique previously described for Threaded Peg insertion in the calcaneus, using the TX-30 Driver and Handle.

Verify Threaded Peg length and position under fluoroscopy.

OPTIONAL: SUBTALAR MONSTER SCREW PLACEMENT OUTSIDE OF PHANTOM TTC TRAUMA NAIL

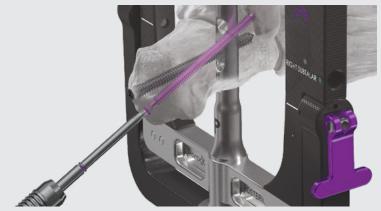

If the trajectory of the Subtalar Threaded Peg through the Nail is not conducive to patient anatomy, or if an additional screw outside of the Nail is desired for stability, a Ø4.5 mm, Ø5.5 mm or Ø7.0 mm Monster Hindfoot Screw can be inserted through an external guide (Home Run Screw Arm) to avoid interference with the Nail and Calcaneal Threaded Peg. Insert the Home Run Screw Arm into the left or right subtalar hole (STJ) on the Outrigger. Insert the K-wire Guide for the selected Monster Screw diameter into the desired hole in the Home Run Screw Arm.


MONSTER HINDFOOT SCREW OFFERING


SCREW DIAMETER	Ø4.5 mm	Ø5.5 mm	Ø7.0 mm
K-WIRE DIAMETER	Ø1.4 mm	Ø1.6 mm	Ø2.3 mm
DRILL SIZE	Ø2.9 mm	Ø3.5 mm	Ø4.6 mm
DRIVER	TX-15	TX-25	TX-30

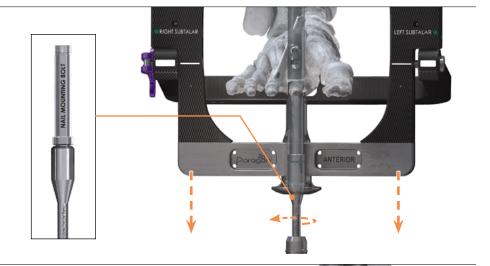
Remove the K-wire Guide, and slide the Home Run Screw Arm off of the K-wire and Outrigger.

If using a headed Monster Screw (shown), utilize the headed Countersink. Rotate the Countersink clockwise over the K-wire to remove adequate bone to seat the Screw head. Measure Screw length using the cannulated Depth Gauge. If using a headless Monster Screw, measure Screw length using the cannulated Depth Gauge prior to using the headless Countersink for the headless Monster Screw.



OPTIONAL: SUBTALAR MONSTER SCREW PLACEMENT OUTSIDE OF PHANTOM TTC TRAUMA NAIL-

Open the Cam Lock adjacent to the Calcaneal Guide Arm on the Outrigger. Move the Calcaneal Guide Arm inferiorly to align with the inferior aspect of the Outrigger. Insert the Subtalar Targeting Arm in the appropriate right (R) or left (L) subtalar hole on the Outrigger.


Drill over the K-wire using the Drill for the selected headed Monster Screw.

Insert a headed Monster Screw using the provided Driver. Confirm Screw length and placement using fluoroscopy.

OUTRIGGER REMOVAL

Verify Nail and Threaded Peg placement under multiple fluoroscopic views. Using the bolt Driver attachment and Handle, turn counterclockwise until the Outrigger is released from the Nail.

END CAP PLACEMENT

Secure the selected End Cap to the Nail using the short TX-30 Driver in a clockwise direction until the End Cap is secure. Bony in growth may occur if an end cap is not used, making implant removal more difficult.

NOTE: Alternatively, a Ø2.3 mm K-wire can be used as a guide into the distal part of the Nail, with the End Cap placed over the K-wire, to allow for centering of the End Cap prior to threading into position.

IMPLANT REMOVAL-

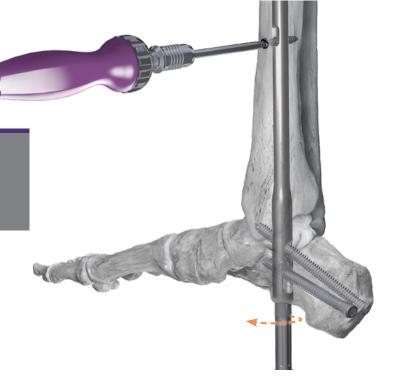
NOTE:

It is recommended to clean out the plantar Nail threads with forceps and saline to remove in growth and soft tissue before attempting to insert explant attachment.

Attach the TX-30 Driver to the appropriate Handle. Using fluoroscopy, locate the plantar insertion point of the Nail, and make a small incision. If an end cap was implanted, insert the TX-30 Driver into the end cap and rotate counterclockwise to remove. If no end cap was implanted, insert the TX-30 Driver into the Internal Compression Screw and rotate counterclockwise to remove.

Attach the Explant Attachment onto the Slap Hammer to create the Slap Hammer Construct.

Attach the Slap Hammer Construct to the Nail by rotating the Slap Hammer in a clockwise direction into the plantar portion of the Nail.



NOTE: The Explant Attachment can be threaded into the Nail before connecting the Slap Hammer for ease of centering and positive feedback.

NOTE: If the surgeon is having difficulty threading the explant attachment into the Nail. The surgeon should switch to option 2 for explantation.

Using fluoroscopy, locate the Tibial Threaded Pegs. Make a small incision at each Threaded Peg location and insert the TX-20 Driver into the head of the Threaded Peg. Turn in a counterclockwise direction until each Threaded Peg is removed.

IMPLANT REMOVAL

Utilizing the same TX-30 Driver and Handle construct as described above, remove the Subtalar Threaded Peg and Calcaneal Threaded Peg. Confirm removal of all Threaded Pegs, using fluoroscopy prior to attempting to remove the Phantom TTC Trauma Nail.

Use the sliding mechanism of the Slap Hammer to back the Nail out of the foot in an inferior direction until the Nail is removed.

NOTE: In some cases, the Nail needs to be rotated in the canal before removal to break apart any bony in growth.

NOTE:

For additional instrumentation for implant removal and information on use please refer to P31-STG-0003.

CASE 1

The PRECISION® Guide, Parallel Offset Guide, Implant Sizer, Stepped Reamer, Entry Drill, Tissue Protectors, K-wires, and joint preparation instrumentation including Curettes, Osteotomes, Chisels, and a Honeybadger are located within Case 1.

CASE 2

The Reamer Heads, Flexible Reamer Shafts, Ball-Tipped Guide Rod, Ghost™ Outrigger, Drill Guides, Threaded Peg Guides, K-wire Guides, and a Hindfoot Distractor are located within Case 2.

CASE 3

The Threaded Pegs, End Caps, Drivers, Driver Attachments, Handles, Drills, Depth Gauges, Thor Hammer, Slap Hammer, and Explant Attachment are located within Case 3

40

PART #	DESCRIPTION	USE
P31-6XX-XXXX-S	Phantom TTC Nail	Single-use
P31-2XX-XXXX-S	Phantom ActivCore Nail	Single-use
P31-8XX-XXXX-S	Phantom TTC Trauma Nail	Single-use
P32-450-XXXX	Tibial Threaded Pegs	Single-use
P31-772-XXXX	Calcaneal Threaded Pegs	Single-use
P31-102-00XX	Shouldered End Cap	Single-use
P31-111-0000-0X	Compression End Cap	Single-use
P31-101-0000-03	Internal Compression Screw	Single-use
P31-955-XXXX	Ball Tipped Guide Rod	Single-use
P99-10X-XXXX-S	Burrs	Single-use
P99-192-XXXX	K-wires	Single-use
P99-150-0X35	Bone Fenestration Chisel	Reusable
P99-150-0055	Cartilage Removal Tool, Large	Reusable
P99-150-009X	Curettes	Reusable
P99-150-13XX	Curved Osteotomes	Reusable
P99-150-12XX	Straight Osteotomes	Reusable
P99-150-0010	Hindfoot Distractor	Reusable
P99-150-2001	Mallet	Reusable
P99-150-2002	Slap Hammer	Reusable
P99-150-0001	Screw Forceps	Reusable
P99-1X0-4630	Ø4.6 x 300 mm Drill	Reusable
P99-100-3825	Ø3.8 x 250 mm Solid Drill	Reusable
P31-100-3813	Ø3.8 x 130 mm Solid Drill	Reusable
P31-915-7200	Phantom 7.2 Headless Solid Countersink	Reusable
P99-000-316M	Axial Ratcheting Handle	Reusable
P99-000-316T	Ratcheting T-Handle	Reusable
P99-000-316P	3/16" Sq. Adaptor	Reusable
P99-191-TXXX-XX	Solid Drivers	Reusable
P99-190-TXXX-XX	Cannulated Drivers	Reusable
P31-940-0002	Implant Sizer	Reusable
P31-951-3032	Guide-Wire, Ø3.0 x 320 mm	Reusable
P31-915-0199	Guide Wire, Sphere wire	Reusable
P31-951-010X	Guide Wire Guide Components	Reusable
P31-956-0001	Tissue Protector	Reusable
P20-930-7000	Tissue Protector	Reusable
P99-110-7019	Ø7.0 x 200 mm Drill	Reusable
P31-955-0XXX	Phantom Hindfoot Reamer	Reusable
P31-954-0XXX	Flexible Reamer Shaft	Reusable
P31-958-0001	Explant Attachment	Reusable
P31-957-000X	Depth Gauge	Reusable
P31-950-XXXX-XX	Ghost Outrigger Components	Reusable
P99-110-0813	Stepped Reamer	Reusable

Refer to www.paragon28.com/ifus for the complete and most current instructions for use document.

MR SAFETY INFORMATION - PHANTOM® TTC TRAUMA

The Phantom® Hindfoot TTC Trauma Nail System has not been evaluated for safety in the MR environment. It has not been tested for heating or unwanted movement in the MR environment. The safety of the Phantom® Hindfoot TTC Trauma Nail System in the MR environment is unknown. Performing an MR exam on a person who has this medical device may result in injury or device malfunction.

MR SAFETY INFORMATION - MONSTER® SCREW SYSTEM

The Monster® Screw System has not been evaluated for safety and compatibility in the MR environment. It has not been tested for heating, migration, or image artifact in the MR environment. The safety of the Monster® Screw System in the MR environment is unknown. Scanning a patient who has this device may result in patient injury.

NOTES:	

PATENTED, DESIGNED & EXCLUSIVELY DISTRIBUTED BY

P31-STG-0004 RevA [08-25-2025]

TMTrademarks and ®Registered Marks of Paragon 28®, Inc.
© Copyright 2025 Paragon 28®, Inc. All rights reserved.

Patents: www.paragon28.com/patents

Paragon 28, Inc. 14445 Grasslands Dr. Englewood, CO 80112 USA (855) 786-2828

- Whitten, "Evaluation of the Effects of Anodization on the Fatigue Performance of Titanium Alloy," in Fatigue and Fracture Metallic Medical Materials and Devices, ed. M. Mitchell, S. Smith, T. Woods, and B. Berg (West Conshohocken, PA: ASTM International, 2013), 109-121.
- Papa JA, et al. Pantalar and tibiotalocalcaneal arthrodesis for the post-traumatic osteoarthrosis of the ankle and hindfoot. J Bone Joint Surg Am. 1992; 74: 1042-1049.
- 3. Internal Test Report TR-20010701

DISCLAIMER

The purpose of the Phantom® TTC Trauma Nail System Surgical Technique Guide is to demonstrate the optionality and functionality of the Phantom® TTC Trauma Nail System. Although variations in placement and use of the Phantom® TTC Trauma Nail System can be performed, the fixation options demonstrated in this technique were chosen to demonstrate the functionality of the system and for simplicity of explanation. Other uses for the Phantom® TTC Trauma Nail System can be employed, appropriate for the size of the device. Federal law (U.S.A.) restricts this device to sale and use by, or on order of, a physician.